If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-57600=0
a = 1; b = 2; c = -57600;
Δ = b2-4ac
Δ = 22-4·1·(-57600)
Δ = 230404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{230404}=\sqrt{4*57601}=\sqrt{4}*\sqrt{57601}=2\sqrt{57601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{57601}}{2*1}=\frac{-2-2\sqrt{57601}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{57601}}{2*1}=\frac{-2+2\sqrt{57601}}{2} $
| 4x/3+5=17 | | X-x*20/100=8018 | | 3x+9=119 | | 3x-2/4-2x+3/3+x=2/3 | | 8k-27k=-19 | | 3x-8=8x | | 100d^2-3d=0 | | (X+3)^2+(y+4)^2=16 | | 2a(5a-4)=4 | | 0.7x-1.3=0.2(5x-8) | | 0.7x-1.3=0.2(5x-80 | | 105=1/2h(8+7) | | -24y^=9y | | 30r^=5r | | X=-4(x+3)(x+4) | | -10b^+25b=0 | | -8y^-10y=0 | | 2t-4/3=2 | | 3(x-1)+2=20 | | 6n^-15n=0 | | X/6+5x/7=3x-9 | | 3r/2+7=10 | | (6*6)+(6*6)-4=x | | 9p^+18p=0 | | 105=50t-5t^2 | | 8r^-24r=0 | | 3(x+8)^2-10=71 | | 1/4x=1000 | | (2-z)(3z-1)=0 | | 5(h+4)=-2h | | 9×8+n=198 | | x=30±√-2²×30/6 |